
Tunable Master-Oscillator Power-Amplifier 

Based on Chirped Quantum-Dot Structures  
 

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, 

C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis,  

M. A. Cataluna, M. Krakowski, and E. Rafailov 
 

   Abstract–-A broadly tunable master-oscillator power-amplifier 

(MOPA) picosecond optical pulse source is demonstrated, 

consisting of an external-cavity passively mode-locked laser 

diode with a tapered semiconductor amplifier. By employing 

chirped quantum-dot structures on both the oscillator’s gain 

chip and amplifier, a wide tunability range between 1187 nm and 

1283 nm is achieved. Under mode-locked operation, the highest 

output peak power of 4.39 W is achieved from the MOPA, 

corresponding to a peak power spectral density of 31.4 dBm/nm.      

   Index Terms–-Chirped quantum dots, master-oscillator power-

amplifier, mode-locking, tunability. 

 

I. INTRODUCTION 

uantum-dot external-cavity passively mode-locked 

lasers (QD-ECMLLs) are excellent candidates for 

versatile ultrashort pulse generation due to quantum-dot (QD) 

lasers’ inherent merits of low threshold current density, low 

optical losses and low noise characteristics [1-4], as well as 

the flexibility that external-cavity mode-locking 

configurations can offer such as a broad tunability for both 

the pulse repetition rate [5-7] and the wavelength [8]. The 

potential for wavelength tunability in InAs/GaAs QD mode-

locked lasers has been demonstrated in grating-coupled QD-

ECMLLs [8] or through dual-mode optical injection [9]. 
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From these prior works, the widest tunability range was 

demonstrated in [8], where the gain chip used in the external 

cavity was based on a QD structure which consisted of 10 

identical InAs/GaAs QD layers. Owing to the inherent broad 

gain and absorption bandwidth afforded by QD structures, it 

was already possible to achieve tunable picosecond operation, 

albeit only within two separate ranges: between 1170 nm –

 1220 nm across the excited-state (ES) transition, and in the 

range of 1265 nm – 1295 nm, corresponding to the 

ground-state (GS) transition. A narrow-ridge QD 

semiconductor optical amplifier (SOA) was used to boost the 

power for diagnostics, but no information was provided on 

the resulting output power [8]. The tunability performance 

can be significantly enhanced by the use of non-identical or 

chirped QD structures, whereby the growth of different 

groups of QD layers is engineered so that each group displays 

a different central emission wavelength, allowing for a 

broadband spectral coverage between the GS and ES 

transitions of the different groups [10]. The merit of using 

such chirped QD structures has been previously demonstrated 

in widely-tunable QD external–cavity lasers in CW operation 

[11-12]. In this paper we demonstrate that the use of non-

identical or chirped QD structures on both oscillator and 

tapered amplifier enables the generation of high-power 

picosecond pulses continuously tunable between 1187 nm and 

1283 nm. This is a spectral region of great interest for various 

applications, which have been addressed by the use of optical 

parametric oscillators, Raman lasers or Bismuth-doped fiber 

lasers. For example, some modalities of multi-photon imaging 

benefit from this spectral band, due to its deep penetration 

depth into biological tissues. It is also of significant relevance 

for second-harmonic generation into the yellow-orange 

spectral range, which is in great demand for a number of 

biomedical applications and ophthalmology in particular. The 

picosecond MOPA system presented in this paper represents 

an attractive light source for these applications, with its lower 

cost, smaller footprint and higher wall-plug efficiency than 

currently available sources in this spectral region.  

II. EXPERIMENTAL SETUP 

The scheme of the experimental setup is shown in Fig. 1. 

The tunable MOPA system consists of a QD-ECMLL and a 

tilted and tapered QD-SOA. The QD-ECMLL is based on a 

two-section gain chip and a diffraction grating (DG) with 600 

grooves/mm and blaze wavelength at 1.25 μm. Both gain chip 

and tapered SOA were fabricated from the same wafer, grown  

Q 
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Fig. 1. Configuration of the tunable MOPA system and characterization 

setup. DG: diffraction grating; OI: optical isolator; HWP: half wave plate; 

MF: mirror flipper; SMF: single-mode fiber; FS: fiber splitter; OSA: optical 
spectrum analyzer; Autoco: autocorrelator; Osc: oscilloscope; PD: photo 

detector; RFSA: RF spectrum analyzer. 

 

by Innolume on a n+-GaAs (100) substrate by molecular beam 

epitaxy (MBE). Its active region contained ten layers of 

chirped InAs/GaAs QDs in order to achieve broad gain 

spectrum, using an epitaxy similar to that used in previous 

papers [10-11], whereby the 10 QD layers in the active region 

were made up of 3 groups with different emission peak 

positions at 1211 nm, 1243 nm and 1285 nm. In order to 

achieve these various shifted spectral emissions, the InGaAs 

capping layer thickness was slightly different between the 

three groups, which resulted in an overall variation of the 

average size of the quantum dots, for each group of dots. As a 

result, there are two main contributions to the inhomogeneous 

broadening: the first contribution is linked with the statistical 

fluctuation of size of the QDs within each group of QD layers 

and which is inherent to their self-assembled growth; the 

second contribution results from the intentional variation in 

capping layer thickness which changes the average size of the 

dots among the three different groups of QD layers. Moreover, 

each group of QD layers allows access to their ground and 

excited-state optical transitions, which are then slightly 

shifted from group to group. This approach allows for a 

continuous wavelength tuning between the ground and 

excited-state optical transitions of the different QD groups. 

The two-section gain chip used for the QD-ECMLL consists 

of a gain section and a saturable absorber (SA) section. The 6-

μm-wide ridge waveguide in the gain section is bent and 

terminated at an angle of 7° relative to the cleaved facet, in 

combination with an antireflection (AR) coating (R~10-5), 

while the front facet was coated with a R~1% coating, which 

allowed for cavity feedback and a high output power. The 

total chip length is 4 mm, with an 800-μm-long SA section 

placed near the front facet. The DG reflected the second order 

diffraction beam back to the gain chip to achieve wavelength 

tunability. We selected the second-order diffraction from the 

600 grooves/mm grating because the optical spectra width 

achieved under this second-order is much narrower than that 

obtained with the first–order configuration. This strategy was 

followed in order to get a higher power spectral density, with 

a view to use this MOPA system in second-harmonic 

generation applications, where the necessary phase-matching 

conditions restrict the useable spectral bandwidth of the 

fundamental radiation. Furthermore, although the pulse 

duration from the second-order diffraction is slightly broader 

than that from the first-order diffraction under the similar 

conditions, the difference is not noteworthy, and as such, the 

peak power was practically the same in both configurations. 

A fundamental repetition frequency of ~1.3 GHz was 

primarily set up by adjusting the external cavity length. The 

output beam from the gain chip was coupled onto the front 

facet of broadband QD-SOA after optical isolation and 

polarization control. The length of the SOA is 6 mm. The 

width of the gain-guided waveguide of the SOA changed 

from 14 μm at the input facet to 80 μm at the output facet. 

Both facets of SOAs were AR-coated, in combination with a 

tilt waveguide resulting in a residual reflectivity of ~10-5. The 

tapered SOAs were fabricated by III-V Lab according to 

University of Athens and Politecnico di Torino’s design and 

simulation. Details on these devices are the subject of a 

different work and will be published elsewhere. Unless stated 

otherwise, both chips were operated at 20 °C.   

 

III. RESULTS 

     For the tunable MOPA in mode-locked operation, Fig. 2(a) 

shows the optical spectra obtained for a 600-mA bias current 

applied to the gain chip (corresponding to 3.1 kA/cm2), and 

SOA current of 2185 mA (710 A/cm2). The reverse bias 

applied on the gain-chip’s saturable absorber was optimized 

between 0-6 V to achieve the shortest pulse duration for each 

wavelength (as shown in Fig. 2b). A strong ASE feature can 

be seen for the 1274-nm laser amplification (Fig. 2(a)), which 

is due to a large detuning between the laser wavelength and 

SOA gain maximum under the abovementioned operation 

conditions. The peak power and gain achieved from the SOA 

(after subtracting the ASE power) as well as the 

corresponding pulse duration are represented in Fig. 2(b). The 

achieved gain is significantly higher on the blue side of the 

spectral range. Given the high level of current injection in the 

tapered SOA, this trend can be accounted for due to the 

saturation across the GS transitions and stronger carrier filling 

of the higher-energy ES levels – which also have a higher 

degeneracy and as such, enable a higher level of gain on the 

blue side of the amplification spectral range.  

     The peak power spectral density at various wavelengths is 

depicted in Fig. 2 (c). The highest peak power of 4.39 W is 

achieved at the wavelength of 1226 nm, which corresponds to 

a peak power spectral density of 31.4 dBm/nm. 

     In Fig. 3, the pulse and RF characteristics for two 

representative operation wavelengths of 1226 nm and 1214 

nm are presented. The high signal-to-noise ratio as well as the 

large number of harmonics in the RF spectra indicates the 

high quality of mode-locking, as shown in Fig. 3 (b), (d). The 

fundamental repetition rate changed slightly from 1.316 GHz 

to 1.324 GHz for the two different wavelengths due to 

variations in the refractive index of the (gain chip) semicond- 



 
 

 
 

 
 
Fig. 2. (a) Optical spectra of tunable MOPA in mode-locked operation with 
gain chip current of 600 mA, reverse bias of 0-6 V, and SOA current of 2185 

mA (710 A/cm2). (b) Output peak power and gain from SOA at different 

wavelengths. (c) Peak power spectral density from SOA vs. wavelength. 

 

uctor, which stems from a combination of spectrally-

dependent refractive index change along with the variation of 

effective overall refractive index with the different reverse 

bias applied to the saturable absorber. 

Importantly, it is possible to achieve a wider tunability 

range in mode-locked operation by increasing the bias current 

applied to the gain chip, as shown in Fig. 4. This widening of 

the tunability range occurs preferentially on the blue side of 

the spectrum, which can be attributed to the increasingly 

stronger carrier filling of the higher-energy, higher-

degeneracy ES levels, as previously observed also in CW 

tunable QD lasers [11]. Under the gain chip current of 

900 mA, a 96-nm tuning range was therefore achieved with 

stable fundamental mode-locked operation. It is important to 

add in this context that the peak power achieved from the QD-

ECMLL oscillator was relatively constant with increasing 

gain chip current due to the concurrent pulse broadening and 

increase of average power, as previously shown also in [3]. 

Our investigation also shows that a ~20% power increase can 

be attained at 10 °C with an SOA current of 2A, which means 

that a higher peak power from the SOA output can be easily 

achieved under a lower SOA operation temperature. Finally, 

and if the target application demands it, a lower pulse 

repetition rate should be achievable with this QD-ECMLL 

oscillator, according to our previous work (undertaken at a 

fixed wavelength of 1.27 µm), in which a 191-MHz repetition 

rate was achieved [5].   

 
        

 
 

  
 
Fig. 3. (a), (b) Autocorrelation trace and RF spectrum at reverse bias of 5 V 

and forward current of 600 mA on the gain chip and SOA current of 2185 

mA at 20 °C at the operation wavelength of 1226 nm. (c),(d) Counterpart for 
operation at 1214 nm, with a reverse bias of 2 V. 

 

 
 

Fig. 4. Mode-locked tuning range limits from the gain chip or the MOPA 

under different forward currents applied on the gain chip at 20 °C. Insets: two 
exemplary optical spectra of the mode-locked pulses at the limit positions.  

(a) (b) 

(d) (c) 

(b) 

(c) 

(a) 



The present QD-ECMLL was designed for high average 

power and peak power operation, thus corresponding to a 

high figure-of-merit (FOM), defined as the product of the 

average power and the peak power (Pavg × Ppeak). Such FOM 

reflects the suitability of the laser source for nonlinear 

excitation (as for example, in multi-photon imaging [13]). It’s 

also worth mentioning that the broad wavelength tunability 

was not available from the MOPA system based on the 

unchirped (identical) QD structures in our previous study [13]. 

Shorter pulse durations could also be obtained in the future by 

a number of approaches such as increasing the value of AR 

coating on the front facet, increasing the absorber-to-total-

length ratio, or employing a intra-cavity or extra-cavity pulse 

compression setup. In adopting these approaches, 

consideration will be given whether the resulting FOM can be 

maintained or preferably enhanced, with a view to maximize 

the applicability of this laser source.  

 

IV. CONCLUSION 

   An all-semiconductor tunable MOPA picosecond optical 

pulse source with a tunability range between 1187 nm and 

1283 nm was demonstrated. Such performance was achieved 

by using chirped QD structures in both oscillator and tapered 

amplifier. The highest peak power of 4.39 W is achieved, 

which corresponds to a peak power spectral density of 31.4 

dBm/nm (1.38 W/nm). This MOPA system represents a 

versatile, compact and low-cost source, well-suited for 

efficient and tunable second-harmonic generation applications 

into the yellow-orange spectral regions. 
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